metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Buqin Jing, Lianzhi Li,* Daqi Wang, Tao Xu and Xinglin Guo

School of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China

Correspondence e-mail: lilianzhi1963@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(C-C) = 0.007 \text{ Å}$ R factor = 0.049 wR factor = 0.126 Data-to-parameter ratio = 12.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Aqua[N,N'-ethylenebis(o-vanillylideniminato- $\kappa^2 N,O$)]oxovanadium(IV) monohydrate

Received 28 September 2005 Accepted 5 October 2005

Online 12 October 2005

Reaction of a vanadyl sulfate solution with a tetradentate Schiff base ligand derived from the condensation of *o*-vanillin and ethylenediamine in ethanol leads to the title compound, aqua{6,6'-dimethoxy-2,2'-[1,2-ethanediylbis(nitrilomethylidyne)]diphenolato- $\kappa^2 N$,*O*}oxovanadium(IV) monohydrate, [V(C₁₈H₁₈N₂O₄)O(H₂O)]·H₂O, in which the V^{IV} atom is sixcoordinated by two N atoms and four O atoms in a distorted octahedral configuration. In the crystal structure, molecules are linked through O-H···O hydrogen bonding [O···O = 2.788 (4)–2.969 (4) Å] to form a two-dimensional network.

Comment

Vanadium is found naturally in soil and water as a trace metal. Its coordination chemistry has received increasing attention due to the fact that vanadium compounds in various oxidation states have insulin-mimetic properties (Diego *et al.*, 2003). Efforts have been made to design and synthesize all kinds of vanadium complexes in place of insulin (Wikksky *et al.*, 2001; Thompson *et al.*, 1999). We report here the synthesis and crystal structure of a new oxovanadium(IV) complex, (I), with a tetradentate Schiff base ligand derived from the condensation of *o*-vanillin and ethylenediamine.

The molecular structure of (I) is shown in Fig. 1. Selected bond angles and distances are given in Table 1. This complex has a distorted octahedral VO²⁺ species in which the terminal oxo (O5) and the coordinated water (O6) atoms occupy the axial positions with a *trans* angle of 176.60 (13)°. The tetradentate ligand derived from the condensation of *o*-vanillin and ethylenediamine forms the equatorial plane of the molecule. The V^{IV} center is displaced by 0.2851 (12) Å from the equatorial plane towards oxo atom O5. The complex forms two sixmembered rings (N1/C1–C3/O1/V1 and N2/C11–C13/O3/V1) and a five-membered ring (N1/C9/C10/N2/V1), which increase the stability of the complex. The two six-membered rings subtend different dihedral angles with the five-membered ring [14.73 (19) and 7.33 (23) Å, respectively], possibly because of

 $\ensuremath{\mathbb{C}}$ 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

steric effects in the equatorial plane. V1-O5 is a typical V=O double bond with a distance of 1.590 (3) Å, close to that reported previously for VO(salen) {salen is 2,2'-[1,2ethanediylbis(nitrilomethylidyne)]diphenolate} (V=O 1.588 Å; Riley et al., 1986). The O6 water molecule is weakly coordinated due to the strong *trans* influence of V=O and the steric hindrance of the equatorial coordination positions [V1 - O6 = 2.389 (3) Å].

In addition to the vanadium complex, the asymmetric unit contains one molecule of water. Both molecules are involved in $O-H \cdots O$ hydrogen bonding, which links the molecules in a two-dimensional network (Table 2 and Fig. 2).

Experimental

o-Vanillin (2 mmol, 304.4 mg) was dissolved in hot ethanol (10 ml) and added slowly to ethylenediamine (1 mmol, 0.06 ml). A yellow flocculent precipitate appeared immediately. After stirring for 1 h, sodium acetate (2.2 mmol, 0.3 g) was added and the precipitate dissolved after 10 min of stirring. A solution of vanadyl sulfate hydrate (1 mmol, 235 mg) in 4 ml water was added dropwise to the mixture, with stirring, and further refluxed for 4 h. The mixture was then cooled to room temperature and a brown powder was precipitated. It was collected by filtration and washed with ethanol. The precipitate was dissolved in acetonitrile, yielding yellow crystals suitable for X-ray diffraction after two days of slow evaporation.

Crystal data

$[V(C_{18}H_{18}N_2O_4)O(H_2O)]\cdot H_2O$ $M_r = 429.32$ Monoclinic, $P2_1/n$ a = 12.613 (7) Å b = 6.701 (4) Å c = 22.383 (12) Å $\beta = 94.086$ (10)° $\beta = 04.086$ (10)°	$D_x = 1.511 \text{ Mg m}^{-3}$ Mo K α radiation Cell parameters from 1765 reflections $\theta = 3.2-23.6^{\circ}$ $\mu = 0.57 \text{ mm}^{-1}$ T = 298 (2) K
$V = 1886.9 (18) \text{ A}^3$	Block, brown
Z = 4	$0.39 \times 0.27 \times 0.06 \text{ mm}$
Data collection	
Bruker SMART CCD area-detector	3311 independent reflections
diffractometer	1977 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.050$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.0^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -11 \rightarrow 15$
$T_{\rm min} = 0.808, T_{\rm max} = 0.967$	$k = -7 \rightarrow 7$

 $l = -26 \rightarrow 24$

Figure 2

Packing diagram of the title compound, with the hydrogen-bonding interactions shown as dashed lines.

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.126$ S = 1.013311 reflections 265 parameters H atoms treated by a mixture of

independent and constrained

refinement

$w = 1/[\sigma^2(F_o^2) + (0.0499P)^2]$ + 0.8719P] where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.38 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

V1-05	1.590 (3)	V1-N1	2.041 (3)
V1-O3	1.944 (3)	V1-N2	2.060 (3)
V1-O1	1.952 (3)	V1-O6	2.389 (3)
O5-V1-O3	103.30 (14)	O1-V1-N2	159.48 (12)
O5-V1-O1	101.88 (13)	N1-V1-N2	80.08 (15)
O3-V1-O1	93.49 (11)	O5-V1-O6	176.60 (13)
O5-V1-N1	98.14 (14)	O3-V1-O6	79.38 (11)
O3-V1-N1	157.05 (12)	O1-V1-O6	79.93 (11)
O1-V1-N1	90.00 (13)	N1-V1-O6	78.92 (12)
O5-V1-N2	97.31 (14)	N2-V1-O6	80.55 (12)
O3-V1-N2	89.08 (13)		

Table 2		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O6−H19···O7 ⁱ	0.90 (1)	2.07 (2)	2.915 (4)	156 (4)
O6-H20··· $O7$ ⁱⁱ	0.90 (1)	1.89 (1)	2.788 (4)	173 (4)
O7−H21···O3	0.89 (1)	2.09 (2)	2.889 (4)	148 (3)
O7−H21···O4	0.89 (1)	2.21 (3)	2.931 (4)	138 (4)
O7−H22···O2	0.90 (1)	2.16 (2)	2.969 (4)	151 (3)
O7−H22···O1	0.90 (1)	2.20 (3)	2.919 (4)	136 (3)

Symmetry codes: (i) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) x, y - 1, z.

Water H atoms were located in difference Fourier maps and during the refinement the O-H distances were restrained to 0.90(1) Å,

9439 measured reflections

with $U_{\rm iso} = 0.08$ Å². All other H atoms were positioned geometrically (C-H = 0.93-0.97 Å) and allowed to ride on their respective parent atoms, with $U_{\rm iso}(\rm H) = 1.2U_{eq}(\rm C)$ or $1.5U_{eq}(\rm methyl C)$.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SMART*; data reduction: *SAINT* (Siemens, 1996); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2000); software used to prepare material for publication: *SHELXTL*.

The authors thank the Natural Science Foundation of Shandong Province (No. Y2004B02) and Liaocheng University for a research grant.

References

- Bruker (2000). SHELXTL. Version 6.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Diego, D. R., Agustin, G., Ramon, V., Carlo, M., Andrea, I. & Dante, M. (2003). *Dalton Trans.* pp. 1813–1820.
- Riley, P. E., Pecoraro, V. L., Carrano, C. J., Bonadies, J. A. & Raymond, K. N. (1986). *Inorg. Chem.* 25, 154–160.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXTL97 and SHELXS97. University of Göttingen, Germany.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Thompson, K. H., McNeill, J. H. & Orvig, C. (1999). Chem. Rev. 99, 2561–2571.
- Wikksky, G. R., Goldfine, A. B., Kostyniak, P. J., McNeill, J. H., Yang, L. Q., Khan, H. R. & Crans, D. C. (2001). J. Inorg. Biochem. 85, 33–42.